

Mitr Phol Sugar Group, Thailand

นวัตกรรมทางเทคโนโลยี่และการจัดการของธุรกิจไฟฟ้า

Dan Chang Bio-Energy Co.,Ltd. Phu Khieo Bio-Energy Co.,Ltd.

Outline

- Development of Cogeneration in Sugar Mills
- Power Business Group in Mitrphol
- Innovation in the Company
- Next Step for Renewable Energy

การผลิตใอน้ำและไฟฟ้า(co-generation)ของโรงงานน้ำตาล

What drove the change?

Cogeneration ของโรงงานน้ำตาลในประเทศ

Before Year 2000

- Mostly low-pressure boilers (< 25 bar)
- Some are very old (> 30 years)
- Mostly within the sugar mill.
- Boilers have been designed deliberately with low efficiency.
- Purchase of used equipment are common.

Innovation in the past ten years

- Use of medium-pressure boilers and high efficiency turbine
- Excess electricity export to the national grid.
- Professional approach in project development.
- Use of special purpose company

Bio-Energy Company

Major shareholders : Mitr Phol Sugar Co., Ltd.

Location : Suphanburi and Chiyaphom Province, Thailand

Total capacity : 140 MW

Fuel : Bagasse, cane leaves, wood bark, and rice husk

Major off-takers : EGAT 76 MW (SPP, 21-year firm contract)

Mitr Phol Sugar Co., Ltd. (steam + power)

Major equipment : Boilers - 4x120 t/h, 68 bar, 510 °C

Turbine – 2x41 MW extraction-condensing

Existing boilers + turbines (from sugar mill)

O&M : Internal

Incentives : BOI privileges, EPPO subsidy 4.2 cent/kWh

How did we do it?

Major Technical Innovation

- First high-pressure boiler turbo-generator system in ASEAN sugar industry
- Boiler efficiency over 90 % (LHV basis)
- Cogeneration thermal efficiency over 60 %
- High flexibility in operation
- High electricity export to the grid: 27 MW
- Multi-fuel firing capability
- Water-cooled vibrating grate furnace
- Modern monitoring & control system (DCS)
- Use of steam transformers

Use of Steam Transformer

Innovation in Feed Stock

Favorable Environmental Impacts

Stack emission

Particulate	20 - 50 ppm
NOx	120 - 160 ppm
SOx	0 - 8 ppm

- Solid waste: ashes from boiler are mixed with filter cake from the sugar mill and goes back to sugar cane plantation as soil improvement substance.
- CO2 mitigation potential: 100,000 ton CO2/year

Socio-Economic Benefits

- Increased business activities in the province
- More jobs have been created
- Created value added to many agricultural waste
- Capacity building of the existing workforce
- New technology transfer to the sugar industry
- Reduction of the nation's import of fossil fuel for power generation
- Reduction of CO2 emission to the atmosphere more than 200,000 ton/year

Management Challenges

	Current	New Scheme
Main Concern	Internal production	External customer
Efficiency	Less priority	Major concern
Engineering	In-house	Out-source
Investment	Low	High
People • Recruitment • Compensations	Sugar industry	Power plant
Communication	Informal	Formal

Need a new management concept!

Recognition

RENEWABLE ENERGY AWARD WINNER BIOMASS COGENERATION PROJECT THAILAND, JUNE 2005

RENEWABLE ENERGY AWARD WINNER BIOMASS COGENERATION PROJECT ASEAN, JULY 2005

What Will Be Next Step?

- Process Improvement
 Gasification Process 2nd generation of technology to convert biomass to energy → cleaner and more efficient
- Alternative Sources of Biomass
 1 ton Municipal Solid Waste (MSW) can convert to energy equivalent to 1 barrel of oil or 1/4 ton of coal
- Other high potential Renewable Energy
 Solar Power Plant

GASIFICATION PROCESS

SIMPLIFIED GASIFICATON CONCEPT

Wide Variety of Feedstocks → Flexible Process → Wide Variety of Products

ตัวอย่างการใช้งานจริงของระบบ Gasification

WASTE TO ENERGY

Energy Potential for Municipal Solid Waste

Reduce dependence on fossil fuels

Thermal treatment of 1 ton MSW equivalent to saving 1 barrel of oil or 1/4 ton of coal

การผลิตไฟฟ้าจากขยะ

Process Diagram โรงไฟฟ้าจากขยะ

SOLAR POWER PLANT

แผนที่แสดงพลังงานแสงอาทิตย์บนพื้นที่ต่างๆบนโลก

จากแผนที่ศักยภาพพลังงานแสงอาทิตย์เฉลี่ยทั้งปี พบว่าพื้นที่ที่ได้รับพลังงานแสงอาทิตย์สูงสุดแผ่ เป็นบริเวณกว้างทางตอนล่างของภาคตะวันออก เ<mark>ฉียงเหนือครอบคลุมพื้นที่บางส่วนของจังหวัด</mark> นครราชสีมา บุรีรัมย์ สุรินทร์ ศรีสะเกษ ร้อยเอ็ด ยโสธร อุบลราชธานี และ ตอนบนของภาค ตะวันออกเฉียงเหนือที่ จังหวัดอุดรธานี รวมทั้ง บางส่วนของภาคกลางที่จังหวัดสุพรรณบุรี ชัยนาท อยุธยา และลพบุรี โคยได้รับพลังงาน แสงอาทิตย์รายวัน เฉลี่ยต่อปีอยู่ในช่วง 19-20 MJ/m2- day พื้นที่ดังกล่าวคิด เป็น 14.3% ของ พื้นที่ทั้งหมดของประเทศ นอกจากนี้ยัง พบว่า 50.2% ของพื้นที่ทั้งหมด ได้รับพลังงาน แสงอาทิตย์ ในช่วง 18-19 MJ/m2 – day และมี เพียง 0.5% ของพื้นที่ที่ ได้รับพลังงานแสงอาทิตย์ น้อยกว่า 16 MJ/m2 – day โดย ค่าเฉลี่ยของรังสี รวมรายวันเฉลี่ยต่อปีทั่วประเทศมีค่าเท่ากับ 18.2 MJ/m2 – day ซึ่งถือได้ว่ามีศักยภาพค่อนข้างสูง

โรงไฟฟ้าพลังงานแสงอาทิตย์

